skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boyd, Oliver_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY The thermal structure of the continental crust plays a critical role in understanding its elastic and rheologic properties as well as its dynamic processes. Thermal parameter data sets on continental scales have been used to constrain the crustal thermal structure, including both the direct (e.g. temperature, heat flux and heat conductivity measured at the surface) and indirect (e.g. seismically derived Mohorovičić discontinuity (Moho) temperature, geomagnetically derived Curie depth) observations. In this study, we present a new continental scale crustal heat generation model with additional information from seismologically inferred crustal composition. Together with previous direct and indirect thermal parameter data sets in the conterminous United States, we use the new crustal heat generation model to construct a 3-D crustal temperature model under a newly developed Bayesian framework. Specifically, we first derive profiles of crustal heat generation based on an empirical geochemical relationship at 1683 locations where seismologically derived crustal composition information is available. Then for each of these locations, the average heat generation values in the upper, middle and lower crust are combined with other thermal parameters through a Markov Chain Monte-Carlo inversion for a conductive, vertically smooth temperature profile. The results, posterior distributions of temperature profiles, are used to generate a 3-D crustal thermal model with the uncertainties systematically assessed. The new temperature model overall exhibits similar patterns to that from the U.S. Geological Survey National Crustal Model, but also reduces possible biases and the model's dependence on a single thermal parameter. 
    more » « less